Figure S1 presents the bilinear surface $d$ acquired from the solution of equation (10), along $x$ and $y$ axes, by applying the obtained parameters for the real world application. The available measurements are indicated with stars.

**Fig. S1** Bilinear surface $d$ fitted to the 71 data points - meteorological stations (stars) (minimum GCV: $m_x = 7$, $m_y = 23$) for the BSS real world example
Figure S2 presents the bilinear surfaces \( d \) and \( e \) acquired from the solution of equation (11), along \( x \) and \( y \) axes, by applying the obtained parameters for the real world application. The open circles represent the values of vectors \( d \) and \( e \).

**Fig. S2** Acquired bilinear surfaces \( d \) and \( e \), so that \( z = d + t e \) fits to the 71 data points corresponding to meteorological stations (minimum GCV: \( mx = 4, my = 8 \)) for the BSSE real world example.